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Universal scaling functions for bond percolation on planar-random and square lattices
with multiple percolating clusters
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Percolation models with multiple percolating clusters have attracted much attention in recent years. Here we
use Monte Carlo simulations to study bond percolation onL13L2 planar random lattices, duals of random
lattices, and square lattices with free and periodic boundary conditions, in vertical and horizontal directions,
respectively, and with various aspect ratiosL1 /L2. We calculate the probability for the appearance ofn
percolating clusters,Wn ; the percolating probabilitiesP; the average fraction of lattice bonds~sites! in the
percolating clusters,̂cb&n (^cs&n), and the probability distribution function for the fractionc of lattice bonds
~sites!, in percolating clusters of subgraphs withn percolating clusters,f n(cb) @ f n(cs)#. Using a small number
of nonuniversal metric factors, we find thatWn , P, ^cb&n (^cs&n), and f n(cb) @ f n(cs)# for random lattices,
duals of random lattices, and square lattices have the same universal finite-size scaling functions. We also find
that nonuniversal metric factors are independent of boundary conditions and aspect ratios.
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I. INTRODUCTION

Percolation is related to many interesting scientific p
nomena@1#. In recent years percolation problems with mu
tiple percolating clusters have attracted much atten
@2–19#. Most simulational studies of such problems we
restricted to percolation on lattices@20#. However, many
physical systems with multiple percolating clusters such
Carbino disks used in the study of quantum Hall effects@2#,
or oil fields confronted with drilling problems, do not hav
underlined regular lattice structures. Thus it is of interes
know the relationship between quantities for percolation
regular lattices and quantities for percolation not on regu
lattices, such as random lattices. In the present paper, we
Monte Carlo simulations to study bond percolation onL1

3L2 planar random lattices, duals of random lattices, a
square lattices with free and periodic boundary condition
vertical and horizontal directions, respectively, and w
various aspect ratiosL1 /L2. We calculate the probability fo
the appearance ofn percolating clusters,Wn ; the percolating
probabilitiesP; the average fraction of lattice bonds~sites! in
percolating clusters,̂cb&n @^cs&n#, and the probability distri-
bution function for fractionc of lattice bonds~sites!, in per-
colating clusters of subgraphs withn percolating clusters
f n(cb) @ f n(cs)#. Using a small number of nonuniversal me
ric factors, we find thatWn , P, ^cb&n (^cs&n), and f n(cb)
@ f n(cs)#, for random lattices, duals of random lattices, a
square lattices, have the same universal finite-size sca
functions. We also find that nonuniversal metric factors
independent of boundary conditions and aspect ratios.
thermore, this study is related to recent developments in
universality and scaling of critical phenomena.

*Electronic address: hphsu@gate.sinica.edu.tw
†Electronic address: huck@phys.sinica.edu.tw
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Universality and scaling are two important concepts in
modern theory of critical phenomena@21–23#, and percola-
tion models are ideal systems for studying critical pheno
ena @1#. Thus universality and scaling have been active
studied in recent decades, especially for percolation mo
@24#. In 1992, Langlandset al. @25# proposed that for bond
and site percolation models on square~sq!, planar triangular
~pt!, and honeycomb~hc! lattices, the critical existence prob
ability ~also called the crossing probability or spanning pro
ability! is a universal quantity, when aspect ratios of sq,
and pt lattices have relative ratios 1:A3:A3/2. In 1995 and
1996, Hu, Lin, and Chen~HLC! @26,3# calculated the exis-
tence probabilityEp , the percolation probabilityP, and the
probability for the appearance ofn percolating clusters,Wn ,
of bond and site percolation models on sq, hc, and pt latt
with aspect ratios 1:A3:A3/2; they showed that all thei
scaled data fall on the same universal scaling functions
selecting a very small numbers of nonuniversal metric f
tors and maintaining similar nonuniversal metric factors u
der free and periodic boundary conditions. By using ren
malization group theory, in 1996 Hovi and Aharony@27#
also pointed out that scaling functions for the spanning pr
ability are universal at the fixed point for every system w
the same dimensionality, spanning rule, aspect ratio,
boundary conditions. In 1996 Okabe and Kikuchi@28#, ex-
tended the work of HLC to a two-dimensional Ising mod
on planar regular lattices. In 1997, Hu and Wang@11# found
that lattice and continuum percolations of hard and soft di
have the same universal scaling functions forWn . Using the
connection between an Ising model and a bond-correla
percolation model@29#, in 1999 Tomita, Okabe, and Hu@17#
calculated the probability for the appearance ofn percolating
clusters,Wn , the percolating probabilities,P, the average
fraction of lattice sites in percolating clusters,^c&n , and the
probability distribution function for the fractionc of lattice
sites in percolating clusters of subgraphs withn percolating
©2001 The American Physical Society27-1
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clusters,f n(c), for bond-correlated percolation model on s
hc, and pt lattices, with aspect ratios of 1:A3:A3/2. Using a
small number of nonuniversal metric factors, they found t
Wn , P, ^c&n , and f n(c) for sq, hc, and pt lattices have th
same universal finite-size scaling functions.

However, the studies mentioned above mostly focused
regular lattices, with fixed coordination numbers@20#. In
1999 Hsu and Huang~HH! @30# determined the percolatio
thresholds and critical exponents, and demonstrated ex
itly that the ideas of universal critical exponents and univ
sal scaling function with nonuniversal metric factors can
extended to bond percolation onL3L periodic planar ran-
dom lattices, duals of random lattices, and square lattices
both existence and percolating probabilities and the m
cluster size. This paper will study bond percolation onL1
3L2 planar random lattices, duals of random lattices, a
square lattices in more detail, and consider the case w
the lattices have free and periodic boundary conditions
vertical and horizontal directions, respectively, as in Ref.@3#.
The percolating probability was defined in Ref.@30# by the
ratio of the number of bonds in the percolating clusters to
total number of bonds. Here we consider two different de
nitions of the percolating probability, in terms of bonds a
sites; the latter was also used in Refs.@3# and @17#. We cal-
culate the probabilityWn for the appearance ofn percolating
clusters, the percolating probabilityP, the average fraction o
lattice bonds~sites! in percolating clusters,̂cb&n (^cs&n),
and the probability distribution function for the fractionc of
lattice bonds~sites! in percolating clusters of subgraphs wi
n percolating clusters,f n(cb) @ f n(cs)#, for various values of
aspect ratiosL1 /L2, and finally check the universal finite
size scaling behaviors for these quantities. In Ref.@30#, HH
used two nonuniversal metric factorsD2 andD3 to fix uni-
versal finite-size scaling functions for the percolating pro
ability in terms of bonds. In the present paper, we calcula
two nonuniversal metric factors of the percolating probab
ity in terms of sites, and obtained previously known valu
of nonuniversal metric factors determined by HH, to che
whether we have universal scaling functions forWn , P,
^cb&n (^cs&n), and f n(cb) @ f n(cs)# for bond percolation on
random lattices, duals of random lattices, and square latti

Dirichlet and Voronoi@31# first used the concept of ran
dom lattices in condensed matter theory. Christ, Friedb
and Lee~CFL! @32# used another type of random lattice
formulate quantum field theory. Here we adopt the CFL
gorithm, and give a brief review of the construction of plan
random lattices and their duals. First we randomly gene
N sites in theL13L2 rectangular domain with periodi
boundary conditions. Next we arbitrarily choose three nea
sites, and draw a circle to go through the three sites. If th
are no lattice sites inside the circle, the three sites are c
nected by links to form a triangle. A planar random lattice
constructed by repeating the process until all sites are c
nected by links. The whole rectangular domain is divid
into 2N nonoverlapping triangles, whose vertices are sites
the random lattice; circle centers of triangles are the site
dual lattices. Thus there is a one to one correspondence
tween triangles and dual lattice sites. Because a link of
random lattice is shared by two triangles, the tw
01612
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corresponding dual lattice sites are connected by one
link. There is a one to one correspondence between links
dual links. The whole rectangular domain is partitioned in
N nonoverlapping planar convex polyhedra, which a
formed by dual links, and the vertices ofN polyhedra are
sites for dual lattices. There is also a one to one corresp
dence between the lattice sites and polyhedra on the
lattice. An example of a planar random lattice with du
under periodic boundary conditions, in both vertical a
horizontal directions, is shown in Fig. 1~a!.

This paper is organized as follows: In Sec. II, we pres
simulational results forWn , P, ^cb&n (^cs&n), and f n(cb)
@ f n(cs)# for bond percolation, onL13L2 random lattices,
duals of random lattices, and square lattices, under free
periodic boundary conditions in vertical and horizontal dire
tions with L1 /L254. The boundary bonds which cross th
rectangular domain in the vertical direction on the rand
lattices, due to periodic boundary conditions, are elimina
because of free boundary conditions in the vertical direct
considered in this paper. We adopt the method of HH@30# to
find percolating clusters. Only the first kind of percolatin
cluster paths without boundary bonds in the vertical direct
~the clusters extend from top to bottom!, should be identified,
and an example of this is shown in Fig. 1~b!. In Sec. III, we
use finite-size scaling theory to check the scaling behav
of various quantities, and to show that such quantities h
universal finite-size scaling functions for regular lattices a
random lattices. A summary is provided in Sec. IV.

II. Wn„L 1 ,L 2 ,p…, f n„C…, AND Šc‹n

We look at the bond percolation on a latticeG, with linear
dimensionsL1 and L2 in horizontal and vertical directions
respectively; the probability for the appearance ofn top-to-

FIG. 1. Examples of~a! anL13L25834 planar random lattice
~solid lines!, with its dual~dashed lines! on anL13L25834 rect-
angular area, with periodic boundary conditions; and~b! a first kind
of percolating cluster path, without boundary bonds~bold solid
lines! on a random lattice.
7-2
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UNIVERSAL SCALING FUNCTIONS FOR BOND . . . PHYSICAL REVIEW E64 016127
bottom percolating clusters,Wn(L1 ,L2 ,p), is defined by@3#

Wn~L1 ,L2 ,p!5 (
Gn8#G

pb(Gn8)~12p!E2b(Gn8). ~1!

Here the percolating cluster is defined as a cluster exten
from top to bottom inG, Gn8 denotes a percolating subgrap
with n percolating clusters,b(Gn8) is the number of occupied
bonds inGn8 , andE is the total number of links inG. The
existence probabilityEp can be obviously expressed as

Ep5 (
n51

`

Wn , ~2!

with W0512Ep .
To obtain more detailed information about the contents

the percolating cluster, following Tomitaet al. @17#, we de-
composeWn as

Wn5E
0

1

f n~c!dc, ~3!

wheren51, . . . ,̀ , c denotes the fraction of lattice bond
~sites! in percolating clusters, andf n(c) is the probability
distribution function ofc in subgraphs withn percolating
clusters. The probability distribution function ofc in all sub-
graphs is the overall summation off n(c), i.e.,

f ~c!5 (
n51

`

f n~c!. ~4!

In terms off n(c), the average fraction of lattice bonds~sites!
in subgraphs withn percolating clusters can be expressed

^c&n5E
0

1

c fn~c!dc, ~5!

FIG. 2. Wn(L1 ,L2 ,p) on square lattices, planar random lattice
and their duals of sizes 128332, 256364, and 5123128, which are
represented by dotted, dashed, and solid lines, respectively.
01612
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s

wheren51, . . . ,̀ , and the percolating probabilityP can be
written as

^c&5 (
n51

`

^c&n5E
0

`

c f~c!dc5P. ~6!

To generate subgraphs, we use a random bond occup
process with equal occupation probabilities for each lin
The simulations are performed on 128332, 256364, and
5123128 planar random~pran! lattices, and their duals~dp-
ran!, with free and periodic boundary conditions in the ve
tical and horizontal directions, respectively. To compare
results with regular lattices, we also perform simulations
square~sq! lattices of the same sizes. On each lattice,
take 60 occupation probabilities around the critical perco
tion threshold for every 0.002 increment, and use the rand
bond occupation process to generate 105–106 configurations
for each occupied probability, p. We calculate

,

FIG. 3. ~a! Pb and^cb&n and~b! Ps and^cs&n on a square lattice,
planar random lattice, and the dual of a planar random lattice of
5123128.
7-3
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Wn(L1 ,L2 ,p), ^cb&n , and^cs&n , wherecb denotes the frac-
tion of bonds in percolating clusters, andcs denotes the frac-
tion of sites in percolating clusters; the results are shown
Figs. 2 and 3. The calculated results of the percolating pr
abilities in terms of bonds,Pb, and in terms of sites,Ps, are
also shown in Fig. 3. We calculatef n(cb) and f n(cs) at
p5pc and takepc50.3333 for planar random lattices an
pc50.6667 for dual lattice@30#. The results are shown in
Fig. 4. The differences between bond and site content
percolating clusters are shown in Figs. 3 and 4; here,
clarity of presentation, only the results for 5123128 lattices
are plotted in the figures.

III. UNIVERSAL FINITE-SIZE SCALING FUNCTIONS

The finite-size scaling theory was first formulated
Fisher in 1971@22#. According to the theory, for a physica
quantity X, which scales asX(t);tr in a thermodynamic
system near a critical pointt50, the same quantity in a finite

FIG. 4. At p5pc , ~a! f (cb) and f n(cb) and~b! f (cs) and f n(cs)
on a square lattice, a planar random lattice, and the dual of a pl
random lattice of size 5123128.
01612
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system with a linear dimensionL, XL(t), should obey the
general law

XL~ t !;L2r/nF~ tL1/n!. ~7!

Here F(x) with x5tL1/n is labeled as a scaling function
with n as a correlation length exponent. In 1984, Privm
and Fisher@23# considered universal finite-size scaling fun
tions and nonuniversal metric factors, and proposed that
singular part of the free energy of a critical system can
written as

f L
s~ t !;L2dY~DtL1/n!, ~8!

ar

FIG. 5. The scaled results ofFn(r ,y)5Wn(L1,L2 ,p) as a func-
tion of y5(p2pc)L

1/n for ~a! planar random lattices and~b! their
duals of sizes 128332, 256364, and 5123128. The monotonic
decreasing function is forF0(r ,y). The S shaped curve is for
F1(r ,y). The bell shaped curves from top to bottom are f
Fn(r ,y), with n52, 3, and 4, respectively.
7-4
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UNIVERSAL SCALING FUNCTIONS FOR BOND . . . PHYSICAL REVIEW E64 016127
where d is the spatial dimensionality of the lattice,Y is a
universal scaling function, andD is a nonuniversal metric
factor.

At a critical point p5pc , there also exists a finite-siz
scaling form for the distribution function ofXL(t) @17#:

Q„XL~ t50!…;Lr/nY„XL~ t50!Lr/n
…. ~9!

In Refs. @26,30#, three nonuniversal metric factorsD1 , D2,
andD3 were used for regular lattices and random lattices
describe the universal scaling functions of existence pr
ability Ep and the percolating probabilityP, i.e.,

Ep~p,L !5F~x!, ~10!

with x5D1(p2pc)L
1/n, and

D3P~p,L !5L2b/nSp~z!, ~11!

with z5D2(p2pc)L
1/n.

Following Hu and Lin@3#, in Figs. 5~a! and 5~b!, respec-
tively, we use the evaluated percolation thresholdpc @30#
and the exact value of the critical exponent,n54/3, to plot
Wn , as a function ofy5(p2pc)L

1/n, for planar random lat-
tices and their duals. We can see from these results tha

FIG. 6. The scaled results ofUn(x)5Wn(L1,L2 ,p), as a func-
tion of x5D1(p2pc)L

1/n for a square lattice~solid curves!, a pla-
nar random lattice~dashed curves!, and the dual of a planar random
lattice ~dotted curves! of size 5123128.

TABLE I. The values of metric factorsD1 , D2
b , D3

b , D2
s and

D3
s , for square lattices, random lattices, and their duals, with f

and periodic boundary conditions in vertical and horizontal dir
tions, respectively.

Lattices Square Planar random Dual of planar rando

D1 1 1.16660.020 1.17760.016
D2

b 1 1.16460.014 1.17660.015
D3

b 1 1.51260.008 0.77860.002
D2

s 1 1.18660.012 1.18060.014
D3

s 1 1.06260.001 1.00560.002
01612
o
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scaled data forWn can be described by a single scaling fun
tion Fn(r ,y) with r 5L1 /L2, andFn(r ,y) for n>2 as a sym-
metric function ofy. In Fig. 6 we plotWn(L1 ,L2 ,p) as a
function of x for bond percolation on a 5123128 random
lattice, the dual of a random lattice, and a square latt
wherex5D1(p2pc)L

1/n, with D1 taken from Table I and
L5(L13L2)1/2. Figure 6 shows that the calculated resu
for eachn can be well described by a single universal scal
function Un(x).

In Hu and Lin’s paper@3#, the scaling functionsFn(r ,y)
were calculated for bond percolation on a square lattice
various values of the aspect ratior. We will examine whether
the same nonuniversal metric factorsD1 can be extended to
different aspect ratios. We calculateWn for L13L2 random
lattices, the duals of random lattices, and square lattices

FIG. 7. Un(r ,x) for a square lattice~solid curves!, a planar
random lattice~dashed curves!, and the dual of a planar random
lattice ~dotted curves!. ~a! n51; the intersection of the curves o
the x50 axis, from top to bottom, are forr 5L1 /L251,2,3, . . . ,6.
~b! The width of curves from small to large are forr 5L1 /L2

51,2,3, . . . ,6.
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HSIAO-PING HSU, SIMON C. LIN, AND CHIN-KUN HU PHYSICAL REVIEW E64 016127
r 5L1 /L251,2, . . . ,6, anddetermine the universal scalin
functionsUn(r ,x), wherex5D1(p2pc)L

1/n, and whereD1
is taken from Table I. The results forn51 and 2 are shown
in Figs. 7~a! and 7~b!, respectively. We can see that th
scaled data for eachr can be described very well by a sing
universal scaling function. The results ofUn(r ,x) as a func-
tion of r, for n50,1, . . . ,4 at thecritical point p5pc , are
presented in Fig. 8~a!, which shows that the three lattice
provide similar results. We also calculate the average n
ber of percolating clustersC(r ,x), defined by

C~r ,x!5 (
n51

`

Un~r ,x!n. ~12!

C(r ,0) for a random lattice, the dual of a random lattice, a
a square lattice, as a functions ofr, are shown in Fig. 8~b!.

FIG. 8. ~a! Un(r ,0) as a function ofr 5L1 /L2, for a number of
percolating clusters from 0 to 4, and~b! C(r ,0) as a function ofr
5L1 /L2, with the slope of the fitting line 0.43. The square latti
(h), the planar random lattice (n), and the dual of the plana
random lattice (3), all have horizontal periodic boundary cond
tions.
01612
-

d

Figure 8~b! shows thatC(r ,0) increases linearly with an in
creasingly larger, and that different lattices have the sam
slope of approximately 0.43.

Tomita et al. @17# obtained universal finite-size scalin
functions of^c&n , ^c&, f n(c), andf (c) for a bond-correlated
percolation model, corresponding to an Ising model on p
nar regular lattices. It is of interest to extend such a study
bond random percolation on random lattices. From Eqs.~5!,
~6!, and~11!, the universal scaling functions of^c& and^c&n
can be expressed as

D3^c~p,L !&5L2b/nG~z! ~13!

and

D3^c~p,L !&n5L2b/nGn~z!, ~14!

with z5D2(p2pc)L
1/n. At p5pc , the universal scaling

functions of f (c) and f n(c) are expressed as

D3
21f ~c!5Lb/nH~z8! ~15!

and

D3
21f n~c!5Lb/nHn~z8!, ~16!

with z85D3cLb/n. To check the finite-size scaling and un
versality of these quantities, we use simulation results
256364 and 5123128 square lattices, planar random la
tices, and their duals. In Ref.@30#, the percolating probability
P is defined in terms of the bond number in percolati
clusters, and the nonuniversal metric factorsD25D2

b and
D35D3

b are used. To evaluate factorsD2
s andD3

s , we adopt
the same procedure as in Ref.@30#, plotting Pb/L2b/n and
Ps/L2b/n as functions ofy5(p2pc)L

1/n, as shown in Fig.
9. All the nonuniversal metric factors for the different typ
of lattices used in this paper are listed in Table I.

In Figs. 10~a! and 10~b!, we plot D3P/L2b/n and
D3^c&n /L2b/n as functions ofz5D2(p2pc)L

1/n for bond
content and site content, respectively, withD2 andD3 taken

FIG. 9. The scaled results ofP(p,L)/L2b/n, in terms of bonds
(P5Pb) and sites (P5Ps), for different types of lattice sizes 256
364 and 5123128, as a function ofy5(p2pc)L

1/n.
7-6
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UNIVERSAL SCALING FUNCTIONS FOR BOND . . . PHYSICAL REVIEW E64 016127
from Table I. At p5pc , the scaled dataD3
21f (c)/Lb/n and

D3
21f n(c)/Lb/n, as functions ofz85D3cLb/n, are presented

in Figs. 11~a! and 11~b!, respectively, for the bond conten
and site content. Figures 10 and 11 show that the bond
colation processes on square lattices, random lattices,
their duals have universal finite-size scaling functions.

IV. SUMMARY AND DISCUSSION

Having used nonuniversal metric factors from Table I
this paper, we found that universal finite-size scaling fu
tions forWn ~Figs. 6 and 7!, ^cb&n andPb @Fig. 10~a!#, ^cs&n
and Ps @Fig. 10~b!#, f n(cb) @Fig. 11~a!#, and f n(cs) @Fig.
11~b!#. Figure 7 includes results for different aspect ratiosr,
i.e., 6>r>1. The values of nonuniversal metric factors,D1 ,
D2

b , andD3
b of Table I are consistent with the correspondi

FIG. 10. The scaled results ofGn(z,L)5D3,c(p,L)
.n /L2b/n, as a function ofz5D2(p2pc)L

1/n, for square lattices,
planar random lattices, and their duals of sizes 256364 and 512
3128. ~a! c5cb, D25D2

b , andD35D3
b ; ~b! c5cs, D25D2

s , and
D35D3

s .
01612
r-
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values of Ref.@30#, where the boundary conditions are di
ferent from the boundary conditions of the present pap
These results suggest that, in random lattices, the nonun
sal metric factors are also independent of the boundary c
ditions and aspect ratios, as in the case of regular latt
@3,26#. Please also note thatD1, D2

b, andD2
s in Table I are

consistent within numerical errors, butD3
b is not equal toD3

s.
Many interesting problems are related to the properties

multiple percolating clusters. It is of interest to extend t
study of the present paper to higher spatial dimensions
particular, a further study of multiple percolating clusters
three dimensions could be related to an oil drilling proble

This work was supported in part by the National Scien
Council of the Republic of China~Taiwan! under Contract
No. NSC 89-2112-M-001-084.

FIG. 11. The scaled results ofHn(z8,L)5D3
21f n(c)/Lb/n, as a

function of z85D3(p2pc)L
b/n for square lattices, planar random

lattices, and their duals of sizes 256364 and 5123128, with fitting
results ~solid curves!: ~a! c5cb and D35D3

b ; ~b! c5cs and D3

5D3
s .
7-7
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